A Representation Approach for Relative Entropy Minimization with Expectation Constraints
نویسندگان
چکیده
We consider the general problem of relative entropy minimization and entropy maximization subject to expectation constraints. We show that the solutions can be represented as members of an exponential family subject to weaker conditions than previously shown, and the representation can be simplified further if an appropriate conjugate prior density is used. As a result, the solutions can be found by optimization with respect to members of the parametric families corresponding to these representations.
منابع مشابه
Nonextensive triangle equality and other properties of Tsallis relative-entropy minimization
Kullback–Leibler relative-entropy has unique properties in cases involving distributions resulting from relative-entropy minimization. Tsallis relative-entropy is a one-parameter generalization of Kullback–Leibler relative-entropy in the nonextensive thermostatistics. In this paper, we present the properties of Tsallis relative-entropy minimization and present some differences with the classica...
متن کاملLinear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach
We develop an algorithm for the solution of multiobjective linear plus fractional programming problem (MOL+FPP) when some of the constraints are homogeneous in nature. Using homogeneous constraints, first we construct a transformation matrix T which transforms the given problem into another MOL+FPP with fewer constraints. Then, a relationship between these two problems, ensuring that the solu...
متن کاملRelative α-entropy minimizers subject to linear statistical constraints
We study minimization of a parametric family of relative entropies, termed relative α-entropies (denoted Iα(P,Q)). These arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (KullbackLeibler divergence). Just like relati...
متن کاملRelative $\alpha$-Entropy Minimizers Subject to Linear Statistical Constraints
We study minimization of a parametric family of relative entropies, termed relative α-entropies (denoted Iα(P,Q)). These arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (KullbackLeibler divergence). Just like relati...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کامل